

'समानो मन्त्रः समितिः समानी' **UNIVERSITY OF NORTH BENGAL** B.Sc. Honours 2nd Semester Examination, 2023

CC3-MATHEMATICS

REAL ANALYSIS

(REVISED SYLLABUS 2023 AND OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

GROUP-A

1.	Answer any <i>four</i> questions from the following:	3×4 = 12
	(a) Prove or disprove: Every bounded sequence is a Cauchy sequence.	3
	(b) Show that $\lim_{n \to \infty} \left(\frac{2n!}{(n!)^2} \right)^{1/n} = 4$.	3
	(c) Examine if the series $\sum_{n=2}^{\infty} \frac{\log n}{\sqrt{n+1}}$ is convergent or not.	3
	(d) Show that a finite set is a closed set.	3
	(e) Check whether the set $\left\{1, -\frac{1}{2}, \frac{1}{2}, \frac{1}{3}, -\frac{1}{3}, \dots\right\}$ is open or closed.	3
	(f) Prove that $\log_{10} 5$ is not rational.	3
	GROUP-B	
	Answer any <i>four</i> questions from the following	$6 \times 4 = 24$
2.	Prove that the union of two countable set is countable.	6
	$2^2 \cdot 2^2 \cdot 2^3 \cdot 3^3 \cdot 4^4 \cdot 4^4$	

Test the convergence of the series $1 + \frac{x}{1!} + \frac{2^2 x^2}{2!} + \frac{3^3 x^3}{3!} + \frac{4^4 x^4}{4!} + \cdots$ 3. 6 for x > 0.

4.	Show that every infinite bounded set has a limit point.	6
5.	For any two sets X and Y of \mathbb{R} , prove that	3+3

5.

(a) $\operatorname{ext}(X \cup Y) = \operatorname{ext}(X) \cap \operatorname{ext}(Y)$

(b) $int(X \cap Y) = int(X) \cap int(Y)$.

UG/CBCS/B.Sc./Hons./2nd Sem./Mathematics/MATHCC3/Revised & Old/2023

6. (a) Prove that $\left\{\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n}\right\}_{n \in \mathbb{N}}$ is a convergent sequence.

(b) Find the upper limit and lower limit of the sequence $\left\{ (-1)^n \left(1 + \frac{1}{2n} \right) \right\}_{n \in \mathbb{N}}$.

7. Prove that the series

$$1 + \frac{\alpha}{\beta} + \frac{\alpha(\alpha+1)}{\beta(\beta+1)} + \frac{\alpha(\alpha+1)(\alpha+2)}{\beta(\beta+1)(\beta+2)} + \cdots$$

where α , β are positive, converges if $\beta > \alpha + 1$ and diverges if $\beta \le \alpha + 1$.

GROUP-C

Answer any *two* questions from the following $12 \times 2 = 24$

8. (a) Prove that a sequence $\{x_n\}$ converges to *l* iff both the sub-sequences $\{x_{2n}\}$ and $\{x_{2n-1}\}$ converge to *l*.

(b) Prove that
$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right) = 1.$$
 4

- (c) Show that every absolutely convergent series is convergent.
- 9. (a) Find the limit points of the set $S = \left\{\frac{2}{p} + \frac{3}{q}: p, q \in \mathbb{N}\right\}$. Is the set *S* closed? Is the 4+1+1 set *S* open? Justify your answer.
 - (b) Prove that the closure of a set $S \subset \mathbb{R}$ is the smallest closed set containing S. 6
- 10.(a) If a sequence $\{a_n\}$ is bounded then show that limit inferior and limit superior of $\{a_n\}$ are both finite.

(b) If
$$a_n = \sin \frac{n\pi}{2} + \frac{(-1)^n}{n}$$
, $n \in \mathbb{N}$, then show that $\underline{\lim} a_n = -1$ and $\overline{\lim} a_n = 1$.

- (c) Show that the sequence $\{S_n\}$, where $S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ cannot converge. 4
- 11.(a) Prove that if $\sum_{n=1}^{\infty} a_n$ be convergent series of positive real numbers, then $\sum_{n=1}^{\infty} a_{2n}$ is convergent.
 - (b) Prove that the series $\frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \dots$ converges for p > 1 and 6 diverges for $p \le 1$.

6

4 + 2

4