
'समानो मन्त्र: समितिः समानी'
UNIVERSITY OF NORTH BENGAL
B.Sc. Honours 2nd Semester Examination, 2023

CC3-MATHEMATICS

Real Analysis

(Revised Syllabus 2023 and Old Syllabus 2018)

Time Allotted: 2 Hours
Full Marks: 60
The figures in the margin indicate full marks.

GROUP-A

1. Answer any four questions from the following: $3 \times 4=12$
(a) Prove or disprove: Every bounded sequence is a Cauchy sequence.
(b) Show that $\lim _{n \rightarrow \infty}\left(\frac{2 n!}{(n!)^{2}}\right)^{1 / n}=4$.
(c) Examine if the series $\sum_{n=2}^{\infty} \frac{\log n}{\sqrt{n+1}}$ is convergent or not.
(d) Show that a finite set is a closed set. 3
(e) Check whether the set $\left\{1,-\frac{1}{2}, \frac{1}{2}, \frac{1}{3},-\frac{1}{3}, \cdots \cdots\right\}$ is open or closed. 3
(f) Prove that $\log _{10} 5$ is not rational. 3

GROUP-B

Answer any four questions from the following

2. Prove that the union of two countable set is countable.
3. Test the convergence of the series $1+\frac{x}{1!}+\frac{2^{2} x^{2}}{2!}+\frac{3^{3} x^{3}}{3!}+\frac{4^{4} x^{4}}{4!}+\cdots \cdots$.
for $x>0$.
4. Show that every infinite bounded set has a limit point.
5. For any two sets X and Y of \mathbb{R}, prove that
(a) $\operatorname{ext}(X \cup Y)=\operatorname{ext}(X) \cap \operatorname{ext}(Y)$
(b) $\operatorname{int}(X \cap Y)=\operatorname{int}(X) \cap \operatorname{int}(Y)$.
6. (a) Prove that $\left\{\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\cdots \cdots+\frac{1}{2 n}\right\}_{n \in \mathbb{N}}$ is a convergent sequence.
(b) Find the upper limit and lower limit of the sequence $\left\{(-1)^{n}\left(1+\frac{1}{2 n}\right)\right\}_{n \in \mathbb{N}}$.
7. Prove that the series

$$
1+\frac{\alpha}{\beta}+\frac{\alpha(\alpha+1)}{\beta(\beta+1)}+\frac{\alpha(\alpha+1)(\alpha+2)}{\beta(\beta+1)(\beta+2)}+\cdots \cdots
$$

where α, β are positive, converges if $\beta>\alpha+1$ and diverges if $\beta \leq \alpha+1$.

GROUP-C

Answer any two questions from the following

8. (a) Prove that a sequence $\left\{x_{n}\right\}$ converges to l iff both the sub-sequences $\left\{x_{2 n}\right\}$ and $\left\{x_{2 n-1}\right\}$ converge to l.
(b) Prove that $\lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\cdots \cdots+\frac{1}{\sqrt{n^{2}+n}}\right)=1$.
(c) Show that every absolutely convergent series is convergent.
9. (a) Find the limit points of the set $S=\left\{\frac{2}{p}+\frac{3}{q}: p, q \in \mathbb{N}\right\}$. Is the set S closed? Is the $4+1+1$ set S open? Justify your answer.
(b) Prove that the closure of a set $S \subset \mathbb{R}$ is the smallest closed set containing S.
10.(a) If a sequence $\left\{a_{n}\right\}$ is bounded then show that limit inferior and limit superior of $\left\{a_{n}\right\}$ are both finite.
(b) If $a_{n}=\sin \frac{n \pi}{2}+\frac{(-1)^{n}}{n}, n \in \mathbb{N}$, then show that $\underline{\lim } a_{n}=-1$ and $\overline{\lim } a_{n}=1$.
(c) Show that the sequence $\left\{S_{n}\right\}$, where $S_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots \cdots+\frac{1}{n}$ cannot converge.
11.(a) Prove that if $\sum_{n=1}^{\infty} a_{n}$ be convergent series of positive real numbers, then $\sum_{n=1}^{\infty} a_{2 n}$ is convergent.
(b) Prove that the series $\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\cdots \cdots$ converges for $p>1$ and diverges for $p \leq 1$.
